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Abstract

Let p be a prime integer and Zp[x] be the set of all polynomials over Zp. For
a polynomial m(x) ∈ Zp[x] such that degree(m(x)) ≥ 2, we define Gm =
{f(x) ∈ Zp[x] | degree(f(x)) < degree(m(x))}. We define two binary opera-
tions on Gm: Addition modulo m(x) and multiplication modulo m(x). If m(x) is
the product of distinct irreducible polynomials in Zp[x] (i.e., m(x) is square-free),
we show that G∗

m = Gm − {0} is the union of disjoints multiplicative groups of
Gm. If m(x) is not square-free, we construct all multiplicative groups of Gm.

1 Introduction
This paper focuses on the construction of multiplicative groups of polynomials with
non-zero identities. We will first define the notion of a group:

Definition 1. A group is a non-empty set and operation, (D, ◦), that satisfies the fol-
lowing axioms:

1. Closure: For any two elements a, b ∈ D, we have a ◦ b ∈ D.

2. Associativity: The binary operation ◦ is associative, meaning that for any three
elements a, b, and c in D, we have (a ◦ b) ◦ c = a ◦ (b ◦ c)

3. Identity: There exists an element e ∈ D such that for any element a ∈ D, we
have e ◦ a = a

4. Inverse: For every element a ∈ D, there exists an element, denoted by a−1, such
that a ∗ a−1 = e

Let p be a prime integer. We recall that Zp[x] is the set of all polynomials with
coefficients from Zp. For a polynomial m(x) ∈ Zp[x] such that degree(m(x)) ≥ 2,
we define Gm = {f(x) ∈ Zp[x] | degree(f(x)) < degree(m(x))}. We define two
binary operations on Gm: Addition modulo m(x) and multiplication modulo m(x). If
m(x) is the product of distinct irreducible polynomials in Zp[x] (i.e., m(x) is square-
free), we show that G∗

m = Gm − {0} is the union of disjoint multiplicative groups of
Gm. If m(x) is not square-free, we construct all multiplicative groups of Gm.

Let p be a prime integer. Recall that f1, f2 ∈ Zp[x] are associative if f1(x) =
uf1(x) for some u in Z∗

p . It is known that if m(x) ∈ Zp[x] of degree ≥ 2, then m(x)
can be written uniquely (up to associative) as

m(x) = Pα1
1 · Pα2

2 · Pαk

k , where P1, P2, ..., PK ∈ Zp[x] are distinct irreducible
polynomials in Zp[x] with αi ⩾ 1∀i ∈ {1, . . . , k}.

If m(x) = P1(x)P2(x) · · ·Pk(x), we say that m(x) is square-free.

Definition 2. 1. Let p be a prime integer and m(x) ∈ Zp[x] of degree ≥ 2. Write
m(x) = Pα1

1 Pα2
2 · · ·Pαk

k , where P1, P2, ..., PK ∈ Zp[x] are distinct irreducible
polynomials in Zp[x] with αi ⩾ 1∀i ∈ {1, . . . , k}. Then each Pα

i i is called a
perfect prime factor of m(x). Let d(x) be a product of distinct perfect prime
factors of m(x) or d(x) = 1. Then d(x) is called a perfect factor of m(x).

2. If w(x) ∈ Gm and w(x)k = 0 in Gm for some integer k ≥ 1, we say that w(x)
is a nilpotent element of Gm.

3. If e(x) ∈ Gm and e(x)2 = e(x) in Gm, we say e(x) is an idempotent of Gm.
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2 Results

2.1 Idempotents
Lemma 1. Assume e(x) is an idempotent of Gm and e(x) ̸= 0, 1. Then gcd(e(x),m(x))
is a perfect factor of m(x).

Proof. Since e2(x) = e(x) in Gm (by definition of an idempotent), then m(x) divides
e(x)(e(x)−1). Mathematically, m(x) | (e(x))(e(x)−1). Since gcd(e(x), e(x)−1) =
1 in Gm and e(x) ̸= 0, 1, we conclude that gcd(e(x),m(x)) is a perfect factor of m(x).

□

To show the existence of such idempotents (and find them), we will use the Chinese
Remainder Theorem for polynomials, which states the following:

Definition 3. For some m(x) = Pα1
1 Pα2

2 · · ·Pαk

k ,

e1(x) ≡ (0 ∨ 1)(mod Pα1
1 )

e2(x) ≡ (0 ∨ 1)(mod Pα2
2 )

...

ek(x) ≡ (0 ∨ 1)(mod Pαk

k )

Since we have k irreducible polynomials and e is congruent either to 0 or to 1 (two
options), then the total number of idempotents for Gm is 2k. We will ignore the trivial
idempotent 0 ∈ Gm. Hence G∗

m has exactly 2k − 1 nonzero idempotents.
Define the following set of polynomials mi with i ∈ {1, . . . , k}.

m1 =
m

Pα1
1

,m2 =
m

Pα2
2

, . . . ,mk =
m

Pαk

k

m1 = Pα2
2 P3 · · ·Pαk

k ,

m2 = Pα1
1 Pα3

3 · · ·Pαk

k ,

...
mk = Pα1

1 Pα2
2 · · ·Pαk−1

k−1

Then:

m1 ×m−1
1 ≡ 1(mod m1)

m2 ×m−1
2 ≡ 1(mod m2)

...
mk ×m−1

k ≡ 1(mod mk)

By the Chinese remainder Theorem, i.e., CRT, we have

ei(x) =
[
m1m

−1
1 (0 ∨ 1) +m2m

−1
2 (0 ∨ 1) + · · ·+mkm

−1
k (0 ∨ 1)

]
mod m(x)

.
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2.2 Main Result
The principal goal of this paper is to prove that when m(x) is square-free, i.e., m(x) is
a product of distinct irreducible polynomials over Zp for some prime p, then the set G∗

m

is the union of disjoint groups under multiplication modulo m(x). Mathematically:

G∗
m =

⋃
(Ui) = U1 ∪ U2 ∪ · · · ∪ Uk, Ui ⊂ G∗

m (1)

To prove this, we will first propose the existence of one group U1 ⊂ G∗
m and then apply

a theorem to show the existence of the others. groups.

Proposition 1. We define U1 to be the following set:

U1 = {f(x) ∈ G∗
m | gcd(f(x),m(x)) = 1}

U1 is a group under multiplication modulo m.

Proof. To prove that U1 is a multiplicative group, we will go through the four axioms
defining groups.

Identity: e(x) = 1 since gcd(f(x),m(x)) = 1. For all functions f(x) in U1,
f(x)× 1 = f(x).

Closure: Take two elements, u1, u2 ∈ U1. Thus gcd(u1(x),m(x)) = 1 and
gcd(u2(x),m(x) = 1). Thus gcd(u1 × u2,m(x)) = 1, where the multiplication is
modulo m(x), showing that we have closure.

Associativity: Since we are dealing with polynomials, this is trivial.
Inverse: Let u ∈ U1. Then gcd(u,m(x)) = 1 in Zp[x]. This means that 1 =

u1(x)u + n(x)m(x) for some u1(x), n(x) ∈ Zp[x]. Now u1(x)u + n(x)m(x) =
u1(x)u in Gm, which means 1 = u1(x)u in Gm. Thus u−1 = u1(x). Hence U1 is a
group under multiplication modulo m(x). □

Theorem 1. Let e(x) ∈ G∗
m be an idempotent of G∗

m. Then e(x)U1 is a multiplicative
group with identity e(x).

Proof. Identity: The identity element is clearly e(x).
Closure: Let w1, w2 ∈ e(x)U1. We show that w1w2 ∈ e(x)U1.
w1 = e(x)d1, w2 = e(x)d2 for some d1, d2 ∈ U1. Since we have established

that U1 is a group and d1, d2 ∈ U1, we conclude that d1d2 ∈ U1. Hence w1w2 =
e(x)d1e(x)d2 = e2(x)d1d2 = e(x)d1d2 ∈ e(x)U1.

Associative: It is clear since (Gm, .) is associative.
Inverse: Let w ∈ e(x)U1. Hence w = e(x)d for some d ∈ U1. Since U1 is a group,

d−1 ∈ U1 with dd−1 = 1. Therefore, e(x)d−1 is the inverse of w. Thus e(x)U1 is a
group under multiplication modulo m(x). □

Theorem 2. Let Uk = {f(x) ∈ G∗
m | gcd(f(x),m(x)) = k}, where k is a perfect fac-

tor of m(x). Then Uk is a multiplicative group with identity ek(x) ̸= 0. Furthermore,
Uk = ek(x)U1.

Proof. First, we show that Uk has an idempotent e(x). Since k is a perfect factor of
m(x), we conclude that the gcd(k,m/k) = 1. Hence by the CRT, there is a d ∈ Gm

such that d ≡ 0 (mod k) and d ≡ 1 (modm/k). It is clear that such d is the idempotent
ek(x) ∈ Uk. We show ek(x)U1 = Uk. Let c(x) in ek(x)U1. Then c(x) = e(x)d(x)
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for some d(x) ∈ U1. Since gcd(d(x),m(x)) = 1 and gcd(ek(x),m(x)) = k, we
conclude gcd(ek(x)d(x),m(x)) = k. Hence c(x) ∈ Uk.

⇐= Let d(x) ∈ Uk. Set v = d(x) + (ek(x) − 1). We will show that d(x) =
ek(x)v(x), where v ∈ U1. Assume we have a prime factor of m(x), say P , that
divides v(x). Observe that d(x)(ek(x) − 1) = 0 ∈ Gm and gcd(d(x), ek(x) −
1) = 1. Hence P must divide both d(x) and ek(x) − 1. This is a contradiction,
since the gcd(d(x), ek(x) − 1) = 1. Therefore, such a P does not exist. Hence
gcd(v(x),m(x)) = 1. Since v(x) = d(x) + (ek(x)− 1), then:

ek(x)v(x) = ek(x)d(x) + 0

⇒ d(x) = ek(x)v(x)

Hence d(x) ∈ e(x)U1. Therefore, by Theorem 1, Uk is a multiplicative group with
identity ek(x). □

Since we have shown that the set U1 is a multiplicative group and each set of the
form ek(x)U1 is also a multiplicative group modulo m(x). Hence it is clear that when
m(x) is a product of distinct irreducible polynomials, then the set G∗

m is made up of
these disjoint partitions Ui∀i ∈ {1, . . . , k} .

Note that if m(x) is not square-free, then by Lemma 1, Uk will not be a group if k
is not a perfect factor of m(x) (i.e., Uk will not have an identity). Using the definition
of the Nilpotent set of Gm, we have the following theorem:

Theorem 3. Assume m(x) is not square-free. Let a ∈ Gm \ Nil(Gm) such that a
is not an element of every multiplicative group of Gm. Then there is a multiplicative
group Uk of Gm for some perfect factor k(x) of m(x) such that a = f + w for some
f ∈ Uk and w ∈ Nil(Gm),

Proof. Assume that a(x) ̸∈ Nil(Gm). Let e(x) be the nonzero idempotent of Gm of
minimum degree such that a(x) | e(x). Hence every prime factor p(x) of e(x) is a
prime factor of a(x). Since ek(x)(ek(x)−1) = 0 in Gm and gcd(ek(x), ek(x)−1) =
1, we conclude that w(x) = a(x)(e(x)− 1) ∈ Nil(Gm). Since 1 = (1− e(x) + e(x),
we have a(x) = a(x)(1−ex(x))+a(x)e(x) = w(x)+e(x)f(x). Let f(x) = a(x)e(x)
and K = gcd(e(x), n(x)) = gcd(f(x),m(x)). Then K is a perfect factor of m(x).
Thus a(x) = f(x) + w(x), for some f ∈ Uk and w ∈ Nil(Gm), where Uk is a
multiplicative group of Gm for some perfect factor k of m(x). □

To get the cardinality of each group, we will be using the ϕ(m(x)) function, de-
scribed in the next section.

2.3 ϕ(m(x)) and the cardinality of Uk

Theorem 4. Let m(x) = Pα1
1 with P1(x) ∈ Zp[x]. then:

ϕ(m(x)) = [pdeg(P1)α1 − pdeg(P1)(α1−1)] = |U1|

Proof. Consider Gm = {f(x) ∈ Zp[x] | deg(f) < deg(m)}. Note that the degree of
m, denoted deg(m) = deg(P1)α1. Therefore the cardinality of Gm, denoted |Gm| =
pdeg(P1)α1 . Observe that gcd(a(x),m(x)) = 1 or a multiple of P1(x) for every a(x) ∈
Gm. This means that deg(a(x)) ⩽ deg(P1)(α1 − 1) for every a(x) ∈ Gm.

Define the set H = {a(x) ∈ Gm | gcd(a(x),m(x)) ̸= 1}. It is clear that

ϕ(m(x)) = |Gm| − |H|
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Since H = {a(x) ∈ Gm | gcd(a(x),m(x)) ̸= 1}, we have H = {a(x)P1(x) |
deg(a(x)) ⩽ deg(P1)(α1 − 1)}. Therefore, |H| = pdeg(P1)(α1−1). Thus:

ϕ(m(x)) = |Gm| − |H| = pdeg(P1)α1 − pdeg(P1)(α1−1)

□

Theorem 5. (1) Let m(x) = Pα1
1 · Pα2

2 · · · · · Pαk

k . Then |U1| is given by:

ϕ(m(x)) = (pdeg(P1)α1 − pdeg(P1)(α1−1))× · · ·× (pdeg(Pk)αk − pdeg(Pk)(αk−1)) (2)

(2) If k is a perfect factor of m(x), then |Uk| = ϕ(m(x)/k)

Proof. (1) It is clear that ϕ(m(x)) is multiplicative,i.e., ϕ(m(x)) = ϕ(Pα1
1 )ϕ(Pα2

2 ) · · ·ϕ(Pαk

k ).
Hence the claim is clear by Theorem 4.

(2) Assume k is a perfect factor of m(x). Then Uk = {f(x) ∈ G∗
m | gcd(f(x),m(x)) =

k} = {f(x) ∈ G∗
m | deg(f) < deg(m/k) and gcd(f(x),m(x)/k) = 1} = ϕ(m(x)/k(x))

□

3 Computational Implementation
To confirm the above results, we have developed a computational implementation that
will take k irreducible polynomials in Zp[x] and produce the subsequent disjoint groups
that makeup Gm. This has been implemented through Python. The approach was first
to generate all polynomials within a set Gm given the matrix representation of the
polynomial m and the value of p. Thus, we would have m(x) ∈ Zp[x]. To generate
this, we will define Zp and then get the number of coefficients by determining deg(m).
Then, the generation of the coefficients matrix (and thus each of the elements in Gm

can be given by the following program:

1 import numpy as np
2 import itertools
3

4 coefficients = list(itertools.product(Z_p, repeat= len(Z_p)))
5 coefficients = [c for c in coefficients if sum(c) >= 0]

Listing 1: Generating the sets of polynomials Gm

To identify each of the idempotents in Gm, we will need to find the elements e(x)
where e(x) × e(x) = e(x), or in other words, e2(x) = e(x). For this, we generate a
table that is pk × pk elements and look along the diagonal. Within this diagonal, if an
element is the same as the corresponding row or column, then we have an idempotent.
The following block of code describes this step:

1 table = np.zeros((card, card), dtype= object)
2 for i in range(card):
3 for j in range(card):
4 product = np.polymul(coefficients[i], coefficients[j])
5 _, remainder = np.polydiv(product, modulus)
6 if len(product) >= num_coefficients:
7 res = np.mod(remainder,len(Z_p))
8 res = [0]*(num_coefficients-len(res)) + list(res)
9 table[i][j] = res

10 else:
11 res = np.mod(product, len(Z_p))
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12 res = [0]*(num_coefficients-len(res)) + list(res)
13 table[i][j] = res
14

15 for i in range(card):
16 for j in range(card):
17 table[i][j] = [int(x) for x in table[i][j]]

Listing 2: Generating the multiplicative table of Gm to get the idempotents

We will then use a gcd() function that will allow us to find the gcd between two
polynomials in Zp[x]. This was adapted from [3].

1 EPSILON = 0.0001
2 def reciprocal(n, p=0):
3 if p == 0:
4 return 1/n
5 for i in range(p):
6 if (n*i) % p == 1:
7 return i
8 return None if n % p == 0 else 0
9

10

11 def gcd(f, g, p=0, verbose=False):
12 if (len(f)<len(g)):
13 return gcd(g,f,p, verbose)
14

15 r = [0]*len(f)
16 r_mult = reciprocal(g[0], p)*f[0]
17

18 for i in range(len(f)):
19 if (i < len(g)):
20 r[i] = f[i] - g[i]*r_mult
21 else:
22 r[i] = f[i]
23 if (p != 0):
24 r[i] %= p
25

26 while (abs(r[0])<EPSILON):
27 r.pop(0)
28 if (len(r) == 0):
29 return g
30

31 return gcd(r, g, p, verbose)

Listing 3: GCD function

Finally, to get the set U1, we go through each element in Gm and find elements
where gcd(f(x),m(x)) ∈ Z∗

p.

1 for i, c in enumerate(coefficients):
2 if (gcd(c, g, p, True) == Z_p - [0]):
3 U1.append(c)}}

Listing 4: Identifying elements of U1

1 for i in range(len(U1)):
2 product = np.polymul(U1[i], e_kx)
3 if (len(product > num_coefficients)):
4 _, remainder = np.polydiv(product, g)
5 remainder = np.mod(remainder[-(num_coefficients):], p)
6 remainder = remainder.astype(int)
7 Uk.append(remainder)
8
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9 else:
10 Uk.append(product)

Listing 5: Identifying elements of Uk

4 Proof of Concept and Examples
Example 4.0.1. We take m(x) = P1P2, with P1(x) = (x2 + x + 1) and P2(x) =
(x3 + x+ 1) in Z2[x]. Then:

m(x) = x5 + x4 + 1 ∈ Z2[x] (3)

We will use this polynomial m(x) to construct the set Gm. We define Gm as:

Gm = {f(x) ∈ Z2[x] | deg(f) < deg(m)},

with deg(m) = 5. Using matrix representation, we can then use our program to
implement the full set Gm, as shown in Table 1.

(a4, a3, a2, a1, a0)
f1 (0, 0, 0, 0, 1)
f2 (0, 0, 0, 1, 0)
...

...
f30 (1, 1, 1, 1, 0)
f31 (1, 1, 1, 1, 1)

Table 1: Generated table of all elements in Gm ∈ Z2[x] where m(x) = x5 + x4 + 1

Where f(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0. The total number of elements in

Gm is 25, whilst the total number of elements in G∗
m is 25 − 1 = 31. The idempotent

elements in this set are as follows:

Matrix Polynomial[
0 0 0 0 1

]
1[

1 1 1 0 0
]

x4 + x3 + x2[
1 1 1 0 1

]
x4 + x3 + x2 + 1

Table 2: Idempotents of Gm with m(x) = x5 + x4 + 1

We are expecting 22 − 1 = 3 idempotents, which is confirmed by the above. We
define the set U1 as U1 = {u(x) ∈ G∗

m | gcd(u(x), x5 + x4 + 1) = 1inZ2[x]}.
Similarly, the set U2 is given by U2 = {(x4 + x3 + x2)u(x) ∈ (Z2[x])m | gcd((x4 +
x3 + x2)u(x), x5 + x4 + 1) ∈ Z∗

2}. Finally, the set U3 is defined as U3 = {(x4 +
x3 + x2 + 1)u(x) ∈ (Z2[x])m | gcd((x4 + x3 + x2 + 1)u(x), x5 + x4 + 1) ∈ Z∗

2}.
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Gm 1 x x+ 1
x2 x2 + 1 x2 + x
x2 + x+ 1 x3 x3 + 1
x3 + x x3 + x+ 1 x3 + x2

x3 + x2+1 x3 + x2 + x x3 + x2 + x+ 1
x4 x4 + 1 x4 + x
x4 + x+ 1 x4 + x2 x4 + x2 + 1
x4 + x2 + x x4 + x2 + x+ 1 x4 + x3

x4 + x3 + 1 x4 + x3 + x x4 + x3 + x+ 1
x4 + x3 + x2 x4 + x3 + x2 + x x4 + x3 + x2 + 1
x4 + x3 + x2 + x+ 1

Table 3: Full set Gm

U1 1 x x+ 1
x2 x2 + 1 x2 + x
x3 x3 + x x3 + x2

x3 + x2 + 1 x3 + x2 + x+ 1 x4

x4 + 1 x4 + x+ 1 x4 + x2

x4 + x2 + x+ 1 x4 + x3 x4 + x3 + 1
x4 + x3 + x x4 + x3 + x2 + x x4 + x3 + x2 + x+ 1

Table 4: The set U1

U2 x2 + x+ 1 x3 + 1 x3 + x2 + x x4 + x
x4 + x2 + 1 x4 + x3 + x+ 1 x4 + x3 + x2

Table 5: The set U2

U3 x3 + x+ 1 x4 + x2 + x x4 + x3 + x2 + 1

Table 6: The set U3
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To confirm the elements in each of these three sets, we have presented the full sets in
Tables 3, 4, 5, and 7.

It is clear that each of the disjoint subsets U1, U2, U3 form up the set Gm. We
can also see that all of U1, U2 and U3 are groups under multiplication modulo m(x),
given that they are closed, associative, have an identity (e1(x) = 1 for U1, e2(x) =
x4 + x3 + x2 for U2 and e3(x) = x4 + x3 + x2 + 1 for U3) and have an inverse for
each of the elements in the set. Therefore, we have demonstrated that for the example
of m(x) = x5 + x4 + 1 ∈ Z2[x], the set Gm is made up of 3 disjoint subsets that each
form a group under multiplication modulo m(x). For the purposes of demonstration,
we will show the Cayley table for U3, since U1 and U2 would consume too much space.

Cayley Table for U3 x3 + x+ 1 x4 + x2 + x x4 + x3 + x2 + 1
x3 + x+ 1 x4 + x2 − x −x4 + x3 − x2 − 1 x3 + x+ 1
x4 + x2 + x −x4 + x3 − x2 − 1 −x3 − x+ 1 x4 + x2 + x
x4 + x3 + x2 + 1 x3 + x+ 1 x4 + x2 + x x4 − x3 + x2 + 1

Table 7: The set U3

Example 4.0.2. Assume we have some m(x) = x3+2x+x2+2 ∈ Z3. Clearly we can
see that m(x) is square-free, as it can be written as m(x) = P1∗P2 = (x+1)(x2+2).
Gm based on this m(x) would be a set that contains 33 = 27 elements, since we
are working in Z3. Additionally, since all polynomials have degree strictly less than
deg(m(x)) = 3, they will be of the form f(x) = a2x

2+a1x+a0 with ai ∈ Z3. We will
find the idempotents of Gm based on the provided algorithms. We will have 22−1 = 3
idempotents, and they are characterized as below:

e1(x) = 1

e2(x) = x2 + 2x+ 1

e3(x) = 2x2 + x

Each idempotent is a perfect factor of m(x), forming a group with the respective
identity. The groups will be as follows: U1 with identity 1, U2 = (x2 + 2x + 1) ∗ U1

with identity (x2 + 2x+ 1), and finally, U3 = (2x2 + x) ∗ U1 with identity 2x2 + x.

Example 4.0.3. Let m(x) = P 2
1 ∗ P2 = (x+ 1)2(x+ 2) = x3 + x2 + 2x+ 2 ∈ Z3.

Clearly, we can see that m(x) is not square-free, as we have at least one term where
the power of Pi is not 1. In this case, then we have three perfect factors of m(x):
1, k = (x + 1)2, h = (x + 2). Thus Gm has exactly 3 multiplicative groups modulo
m(x), namely, U1, Uk and Uh.

5 Conclusion
Let p be a prime integer and m(x) ∈ Zp[x] of degree ≥ 2. In this project, we have
used the Chinese Remainder Theorem to construct multiplicative groups modulo m(x)
in Gm, where Gm = f(x) ∈ Zp[x]|deg(f) < deg(m). If m(x) ∈ Zp[x] is square-
free, we showed that G∗

m is the union of disjoint multiplicative groups modulo m(x).
If m(x) is not square-free, we constructed all multiplicative group modulo m(x) in
Gm. If Uk is a multiplicative group modulo m(x) in Gm, then |Uk| is determined.
Through our computational implementation of this process, we can easily find out ev-
ery element within the set Gm and each subsequent subset that forms a group, namely
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U1, U2, ..., Uk. This removes the need for exhaustively going through the set Gm

by hand and significantly reduces the restrictions on finding sets with m(x) having
a higher degree working in Zp. For future work, we consider other problems to which
the Chinese Remainder Theorem applies.
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