Construction of Multiplicative Groups of Polynomials with Non-Zero Identities in $\mathbb{Z}_{p}[x]$

Dara Varam
Advised by Dr. Ayman Badawi

Senior Thesis presented in partial fulfillment of the requirements for Bachelor of Science in Mathematics

Abstract

Let p be a prime integer and $\mathbb{Z}_{p}[x]$ be the set of all polynomials over Z_{p}. For a polynomial $m(x) \in Z_{p}[x]$ such that degree $(m(x)) \geq 2$, we define $G_{m}=$ $\left\{f(x) \in Z_{p}[x] \mid \operatorname{degree}(f(x))<\operatorname{degree}(m(x))\right\}$. We define two binary operations on G_{m} : Addition modulo $m(x)$ and multiplication modulo $m(x)$. If $m(x)$ is the product of distinct irreducible polynomials in $Z_{p}[x]$ (i.e., $m(x)$ is square-free), we show that $G_{m}^{*}=G_{m}-\{0\}$ is the union of disjoints multiplicative groups of G_{m}. If $m(x)$ is not square-free, we construct all multiplicative groups of G_{m}.

1 Introduction

This paper focuses on the construction of multiplicative groups of polynomials with non-zero identities. We will first define the notion of a group:

Definition 1. A group is a non-empty set and operation, (D, \circ), that satisfies the following axioms:

1. Closure: For any two elements $a, b \in D$, we have $a \circ b \in D$.
2. Associativity: The binary operation \circ is associative, meaning that for any three elements a, b, and c in D, we have $(a \circ b) \circ c=a \circ(b \circ c)$
3. Identity: There exists an element $e \in D$ such that for any element $a \in D$, we have $e \circ a=a$
4. Inverse: For every element $a \in D$, there exists an element, denoted by a^{-1}, such that $a * a^{-1}=e$

Let p be a prime integer. We recall that $Z_{p}[x]$ is the set of all polynomials with coefficients from Z_{p}. For a polynomial $m(x) \in Z_{p}[x]$ such that degree $(m(x)) \geq 2$, we define $G_{m}=\left\{f(x) \in Z_{p}[x] \mid \operatorname{degree}(f(x))<\operatorname{degree}(m(x))\right\}$. We define two binary operations on G_{m} : Addition modulo $m(x)$ and multiplication modulo $m(x)$. If $m(x)$ is the product of distinct irreducible polynomials in $Z_{p}[x]$ (i.e., $m(x)$ is squarefree), we show that $G_{m}^{*}=G_{m}-\{0\}$ is the union of disjoint multiplicative groups of G_{m}. If $m(x)$ is not square-free, we construct all multiplicative groups of G_{m}.

Let p be a prime integer. Recall that $f_{1}, f_{2} \in Z_{p}[x]$ are associative if $f_{1}(x)=$ $u f_{1}(x)$ for some u in Z_{p}^{*}. It is known that if $m(x) \in Z_{p}[x]$ of degree ≥ 2, then $m(x)$ can be written uniquely (up to associative) as
$m(x)=P_{1}^{\alpha_{1}} \cdot P_{2}^{\alpha_{2}} \cdot P_{k}^{\alpha_{k}}$, where $P_{1}, P_{2}, \ldots, P_{K} \in \mathbb{Z}_{p}[x]$ are distinct irreducible polynomials in $Z_{p}[x]$ with $\alpha_{i} \geqslant 1 \forall i \in\{1, \ldots, k\}$.

If $m(x)=P_{1}(x) P_{2}(x) \cdots P_{k}(x)$, we say that $m(x)$ is square-free.
Definition 2. 1. Let p be a prime integer and $m(x) \in Z_{p}[x]$ of degree ≥ 2. Write $m(x)=P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}} \cdots P_{k}^{\alpha_{k}}$, where $P_{1}, P_{2}, \ldots, P_{K} \in \mathbb{Z}_{p}[x]$ are distinct irreducible polynomials in $Z_{p}[x]$ with $\alpha_{i} \geqslant 1 \forall i \in\{1, \ldots, k\}$. Then each $P_{i}^{\alpha}{ }_{i}$ is called a perfect prime factor of $m(x)$. Let $d(x)$ be a product of distinct perfect prime factors of $m(x)$ or $d(x)=1$. Then $d(x)$ is called a perfect factor of $m(x)$.
2. If $w(x) \in G_{m}$ and $w(x)^{k}=0$ in G_{m} for some integer $k \geq 1$, we say that $w(x)$ is a nilpotent element of G_{m}.
3. If $e(x) \in G_{m}$ and $e(x)^{2}=e(x)$ in G_{m}, we say $e(x)$ is an idempotent of G_{m}.

2 Results

2.1 Idempotents

Lemma 1. Assume $e(x)$ is an idempotent of G_{m} and $e(x) \neq 0,1$. Then $\operatorname{gcd}(e(x), m(x))$ is a perfect factor of $m(x)$.

Proof. Since $e^{2}(x)=e(x)$ in G_{m} (by definition of an idempotent), then $m(x)$ divides $e(x)(e(x)-1)$. Mathematically, $m(x) \mid(e(x))(e(x)-1)$. Since $\operatorname{gcd}(e(x), e(x)-1)=$ 1 in G_{m} and $e(x) \neq 0,1$, we conclude that $\operatorname{gcd}(e(x), m(x))$ is a perfect factor of $m(x)$.

To show the existence of such idempotents (and find them), we will use the Chinese Remainder Theorem for polynomials, which states the following:

Definition 3. For some $m(x)=P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}} \cdots P_{k}^{\alpha_{k}}$,

$$
\begin{array}{r}
e_{1}(x) \equiv(0 \vee 1)\left(\bmod P_{1}^{\alpha_{1}}\right) \\
e_{2}(x) \equiv(0 \vee 1)\left(\bmod P_{2}^{\alpha_{2}}\right) \\
\vdots \\
e_{k}(x) \equiv(0 \vee 1)\left(\bmod P_{k}^{\alpha_{k}}\right)
\end{array}
$$

Since we have k irreducible polynomials and e is congruent either to 0 or to 1 (two options), then the total number of idempotents for G_{m} is 2^{k}. We will ignore the trivial idempotent $0 \in G_{m}$. Hence G_{m}^{*} has exactly $2^{k}-1$ nonzero idempotents.

Define the following set of polynomials m_{i} with $i \in\{1, \ldots, k\}$.

$$
\begin{gathered}
m_{1}=\frac{m}{P_{1}^{\alpha_{1}}}, m_{2}=\frac{m}{P_{2}^{\alpha_{2}}}, \ldots, m_{k}=\frac{m}{P_{k}^{\alpha_{k}}} \\
m_{1}=P_{2}^{\alpha_{2}} P_{3} \cdots P_{k}^{\alpha_{k}}, \\
m_{2}=P_{1}^{\alpha_{1}} P_{3}^{\alpha_{3}} \cdots P_{k}^{\alpha_{k}}, \\
\vdots \\
m_{k}=P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}} \cdots P_{k-1}^{\alpha_{k-1}}
\end{gathered}
$$

Then:

$$
\begin{array}{r}
m_{1} \times m_{1}^{-1} \equiv 1\left(\bmod m_{1}\right) \\
m_{2} \times m_{2}^{-1} \equiv 1\left(\bmod m_{2}\right) \\
\vdots \\
m_{k} \times m_{k}^{-1} \equiv 1\left(\bmod m_{k}\right)
\end{array}
$$

By the Chinese remainder Theorem, i.e., CRT, we have

$$
e_{i}(x)=\left[m_{1} m_{1}^{-1}(0 \vee 1)+m_{2} m_{2}^{-1}(0 \vee 1)+\cdots+m_{k} m_{k}^{-1}(0 \vee 1)\right] \bmod m(x)
$$

2.2 Main Result

The principal goal of this paper is to prove that when $m(x)$ is square-free, i.e., $m(x)$ is a product of distinct irreducible polynomials over \mathbb{Z}_{p} for some prime p, then the set G_{m}^{*} is the union of disjoint groups under multiplication modulo $m(x)$. Mathematically:

$$
\begin{equation*}
G_{m}^{*}=\bigcup\left(U_{i}\right)=U_{1} \cup U_{2} \cup \cdots \cup U_{k}, U_{i} \subset G_{m}^{*} \tag{1}
\end{equation*}
$$

To prove this, we will first propose the existence of one group $U_{1} \subset G_{m}^{*}$ and then apply a theorem to show the existence of the others. groups.

Proposition 1. We define U_{1} to be the following set:

$$
U_{1}=\left\{f(x) \in G_{m}^{*} \mid \operatorname{gcd}(f(x), m(x))=1\right\}
$$

U_{1} is a group under multiplication modulo m.
Proof. To prove that U_{1} is a multiplicative group, we will go through the four axioms defining groups.

Identity: $e(x)=1$ since $\operatorname{gcd}(f(x), m(x))=1$. For all functions $f(x)$ in U_{1}, $f(x) \times 1=f(x)$.

Closure: Take two elements, $u_{1}, u_{2} \in U_{1}$. Thus $\operatorname{gcd}\left(u_{1}(x), m(x)\right)=1$ and $\operatorname{gcd}\left(u_{2}(x), m(x)=1\right)$. Thus $\operatorname{gcd}\left(u_{1} \times u_{2}, m(x)\right)=1$, where the multiplication is modulo $m(x)$, showing that we have closure.

Associativity: Since we are dealing with polynomials, this is trivial.
Inverse: Let $u \in U_{1}$. Then $\operatorname{gcd}(u, m(x))=1$ in $\mathbb{Z}_{p}[x]$. This means that $1=$ $u_{1}(x) u+n(x) m(x)$ for some $u_{1}(x), n(x) \in \mathbb{Z}_{p}[x]$. Now $u_{1}(x) u+n(x) m(x)=$ $u_{1}(x) u$ in G_{m}, which means $1=u_{1}(x) u$ in G_{m}. Thus $u^{-1}=u_{1}(x)$. Hence U_{1} is a group under multiplication modulo $m(x)$.

Theorem 1. Let $e(x) \in G_{m}^{*}$ be an idempotent of G_{m}^{*}. Then $e(x) U_{1}$ is a multiplicative group with identity $e(x)$.

Proof. Identity: The identity element is clearly $e(x)$.
Closure: Let $w_{1}, w_{2} \in e(x) U_{1}$. We show that $w_{1} w_{2} \in e(x) U_{1}$.
$w_{1}=e(x) d_{1}, w_{2}=e(x) d_{2}$ for some $d_{1}, d_{2} \in U_{1}$. Since we have established that U_{1} is a group and $d_{1}, d_{2} \in U_{1}$, we conclude that $d_{1} d_{2} \in U_{1}$. Hence $w_{1} w_{2}=$ $e(x) d_{1} e(x) d_{2}=e^{2}(x) d_{1} d_{2}=e(x) d_{1} d_{2} \in e(x) U_{1}$.

Associative: It is clear since $\left(G_{m},.\right)$ is associative.
Inverse: Let $w \in e(x) U_{1}$. Hence $w=e(x) d$ for some $d \in U_{1}$. Since U_{1} is a group, $d^{-1} \in U_{1}$ with $d d^{-1}=1$. Therefore, $e(x) d^{-1}$ is the inverse of w. Thus $e(x) U_{1}$ is a group under multiplication modulo $m(x)$.

Theorem 2. Let $U_{k}=\left\{f(x) \in G_{m}^{*} \mid \operatorname{gcd}(f(x), m(x))=k\right\}$, where k is a perfect factor of $m(x)$. Then U_{k} is a multiplicative group with identity $e_{k}(x) \neq 0$. Furthermore, $U_{k}=e_{k}(x) U_{1}$.

Proof. First, we show that U_{k} has an idempotent $e(x)$. Since k is a perfect factor of $m(x)$, we conclude that the $\operatorname{gcd}(k, m / k)=1$. Hence by the CRT, there is a $d \in G_{m}$ such that $d \equiv 0(\bmod k)$ and $d \equiv 1(\bmod m / k)$. It is clear that such d is the idempotent $e_{k}(x) \in U_{k}$. We show $e_{k}(x) U_{1}=U_{k}$. Let $c(x)$ in $e_{k}(x) U_{1}$. Then $c(x)=e(x) d(x)$
for some $d(x) \in U_{1}$. Since $\operatorname{gcd}(d(x), m(x))=1$ and $\operatorname{gcd}\left(e_{k}(x), m(x)\right)=k$, we conclude $\operatorname{gcd}\left(e_{k}(x) d(x), m(x)\right)=k$. Hence $c(x) \in U_{k}$.
\Longleftarrow Let $d(x) \in U_{k}$. Set $v=d(x)+\left(e_{k}(x)-1\right)$. We will show that $d(x)=$ $e_{k}(x) v(x)$, where $v \in U_{1}$. Assume we have a prime factor of $m(x)$, say P, that divides $v(x)$. Observe that $d(x)\left(e_{k}(x)-1\right)=0 \in G_{m}$ and $\operatorname{gcd}\left(d(x), e_{k}(x)-\right.$ $1)=1$. Hence P must divide both $d(x)$ and $e_{k}(x)-1$. This is a contradiction, since the $\operatorname{gcd}\left(d(x), e_{k}(x)-1\right)=1$. Therefore, such a P does not exist. Hence $\operatorname{gcd}(v(x), m(x))=1$. Since $v(x)=d(x)+\left(e_{k}(x)-1\right)$, then:

$$
\begin{array}{r}
e_{k}(x) v(x)=e_{k}(x) d(x)+0 \\
\Rightarrow d(x)=e_{k}(x) v(x)
\end{array}
$$

Hence $d(x) \in e(x) U_{1}$. Therefore, by Theorem $1, U_{k}$ is a multiplicative group with identity $e_{k}(x)$.

Since we have shown that the set U_{1} is a multiplicative group and each set of the form $e_{k}(x) U_{1}$ is also a multiplicative group modulo $m(x)$. Hence it is clear that when $m(x)$ is a product of distinct irreducible polynomials, then the set G_{m}^{*} is made up of these disjoint partitions $U_{i} \forall i \in\{1, \ldots, k\}$.

Note that if $m(x)$ is not square-free, then by Lemma $1, U_{k}$ will not be a group if k is not a perfect factor of $m(x)$ (i.e., U_{k} will not have an identity). Using the definition of the Nilpotent set of G_{m}, we have the following theorem:

Theorem 3. Assume $m(x)$ is not square-free. Let $a \in G_{m} \backslash \operatorname{Nil}\left(G_{m}\right)$ such that a is not an element of every multiplicative group of G_{m}. Then there is a multiplicative group U_{k} of G_{m} for some perfect factor $k(x)$ of $m(x)$ such that $a=f+w$ for some $f \in U_{k}$ and $w \in \operatorname{Nil}\left(G_{m}\right)$,

Proof. Assume that $a(x) \notin \operatorname{Nil}\left(G_{m}\right)$. Let $e(x)$ be the nonzero idempotent of G_{m} of minimum degree such that $a(x) \mid e(x)$. Hence every prime factor $p(x)$ of $e(x)$ is a prime factor of $a(x)$. Since $e_{k}(x)\left(e_{k}(x)-1\right)=0$ in G_{m} and $\operatorname{gcd}\left(e_{k}(x), e_{k}(x)-1\right)=$ 1, we conclude that $w(x)=a(x)(e(x)-1) \in \operatorname{Nil}\left(G_{m}\right)$. Since $1=(1-e(x)+e(x)$, we have $a(x)=a(x)(1-e x(x))+a(x) e(x)=w(x)+e(x) f(x)$. Let $f(x)=a(x) e(x)$ and $K=\operatorname{gcd}(e(x), n(x))=\operatorname{gcd}(f(x), m(x))$. Then K is a perfect factor of $m(x)$. Thus $a(x)=f(x)+w(x)$, for some $f \in U_{k}$ and $w \in \operatorname{Nil}\left(G_{m}\right)$, where U_{k} is a multiplicative group of G_{m} for some perfect factor k of $m(x)$.

To get the cardinality of each group, we will be using the $\phi(m(x))$ function, described in the next section.

$2.3 \quad \phi(m(x))$ and the cardinality of U_{k}

Theorem 4. Let $m(x)=P_{1}^{\alpha_{1}}$ with $P_{1}(x) \in \mathbb{Z}_{p}[x]$. then:

$$
\phi(m(x))=\left[p^{\operatorname{deg}\left(P_{1}\right) \alpha_{1}}-p^{\operatorname{deg}\left(P_{1}\right)\left(\alpha_{1}-1\right)}\right]=\left|U_{1}\right|
$$

Proof. Consider $G_{m}=\left\{f(x) \in \mathbb{Z}_{p}[x] \mid \operatorname{deg}(f)<\operatorname{deg}(m)\right\}$. Note that the degree of m, denoted $\operatorname{deg}(m)=\operatorname{deg}\left(P_{1}\right) \alpha_{1}$. Therefore the cardinality of G_{m}, denoted $\left|G_{m}\right|=$ $p^{\operatorname{deg}\left(P_{1}\right) \alpha_{1}}$. Observe that $\operatorname{gcd}(a(x), m(x))=1$ or a multiple of $P_{1}(x)$ for every $a(x) \in$ G_{m}. This means that $\operatorname{deg}(a(x)) \leqslant \operatorname{deg}\left(P_{1}\right)\left(\alpha_{1}-1\right)$ for every $a(x) \in G_{m}$.

Define the set $H=\left\{a(x) \in G_{m} \mid \operatorname{gcd}(a(x), m(x)) \neq 1\right\}$. It is clear that

$$
\phi(m(x))=\left|G_{m}\right|-|H|
$$

Since $H=\left\{a(x) \in G_{m} \mid \operatorname{gcd}(a(x), m(x)) \neq 1\right\}$, we have $H=\left\{a(x) P_{1}(x) \mid\right.$ $\left.\operatorname{deg}(a(x)) \leqslant \operatorname{deg}\left(P_{1}\right)\left(\alpha_{1}-1\right)\right\}$. Therefore, $|H|=p^{\operatorname{deg}\left(P_{1}\right)\left(\alpha_{1}-1\right)}$. Thus:

$$
\phi(m(x))=\left|G_{m}\right|-|H|=p^{\operatorname{deg}\left(P_{1}\right) \alpha_{1}}-p^{\operatorname{deg}\left(P_{1}\right)\left(\alpha_{1}-1\right)}
$$

Theorem 5. (1) Let $m(x)=P_{1}^{\alpha_{1}} \cdot P_{2}^{\alpha_{2}} \cdots \cdot P_{k}^{\alpha_{k}}$. Then $\left|U_{1}\right|$ is given by:

$$
\begin{equation*}
\phi(m(x))=\left(p^{\operatorname{deg}\left(P_{1}\right) \alpha_{1}}-p^{\operatorname{deg}\left(P_{1}\right)\left(\alpha_{1}-1\right)}\right) \times \cdots \times\left(p^{\operatorname{deg}\left(P_{k}\right) \alpha_{k}}-p^{\operatorname{deg}\left(P_{k}\right)\left(\alpha_{k}-1\right)}\right) \tag{2}
\end{equation*}
$$

(2) If k is a perfect factor of $m(x)$, then $\left|U_{k}\right|=\phi(m(x) / k)$

Proof. (1) It is clear that $\phi(m(x))$ is multiplicative,i.e., $\phi(m(x))=\phi\left(P_{1}^{\alpha_{1}}\right) \phi\left(P_{2}^{\alpha_{2}}\right) \cdots \phi\left(P_{k}^{\alpha_{k}}\right)$. Hence the claim is clear by Theorem 4.
(2) Assume k is a perfect factor of $m(x)$. Then $U_{k}=\left\{f(x) \in G_{m}^{*} \mid \operatorname{gcd}(f(x), m(x))=\right.$ $k\}=\left\{f(x) \in G_{m}^{*} \mid \operatorname{deg}(f)<\operatorname{deg}(m / k)\right.$ and $\left.g c d(f(x), m(x) / k)=1\right\}=\phi(m(x) / k(x))$

3 Computational Implementation

To confirm the above results, we have developed a computational implementation that will take k irreducible polynomials in $\mathbb{Z}_{p}[x]$ and produce the subsequent disjoint groups that makeup G_{m}. This has been implemented through Python. The approach was first to generate all polynomials within a set G_{m} given the matrix representation of the polynomial m and the value of p. Thus, we would have $m(x) \in \mathbb{Z}_{p}[x]$. To generate this, we will define \mathbb{Z}_{p} and then get the number of coefficients by determining $\operatorname{deg}(m)$. Then, the generation of the coefficients matrix (and thus each of the elements in G_{m} can be given by the following program:

```
import numpy as np
import itertools
coefficients = list(itertools.product(Z_p, repeat= len(Z_p)))
coefficients = [c for c in coefficients if sum(c) >= 0]
```

Listing 1: Generating the sets of polynomials G_{m}
To identify each of the idempotents in G_{m}, we will need to find the elements $e(x)$ where $e(x) \times e(x)=e(x)$, or in other words, $e^{2}(x)=e(x)$. For this, we generate a table that is $p^{k} \times p^{k}$ elements and look along the diagonal. Within this diagonal, if an element is the same as the corresponding row or column, then we have an idempotent. The following block of code describes this step:

```
table = np.zeros((card, card), dtype= object)
for i in range(card) :
    for j in range(card):
        product = np.polymul(coefficients[i], coefficients[j])
        _, remainder = np.polydiv(product, modulus)
        if len(product) >= num_coefficients:
            res = np.mod(remainder,len(Z_p))
            res = [0]*(num_coefficients-len(res)) + list(res)
            table[i][j] = res
        else:
            res = np.mod(product, len(Z_p))
```

```
res = [0]*(num_coefficients-len(res)) + list(res)
table[i][j] = res
for i in range(card):
    for j in range(card):
        table[i][j] = [int(x) for x in table[i][j]]
```

Listing 2: Generating the multiplicative table of G_{m} to get the idempotents
We will then use a $\operatorname{gcd}()$ function that will allow us to find the gcd between two polynomials in $\mathbb{Z}_{p}[x]$. This was adapted from [3].

```
    EPSILON = 0.0001
def reciprocal(n, p=0):
    if p == 0:
        return 1/n
    for i in range(p):
        if (n*i) % p == 1:
            return i
    return None if n % p == 0 else 0
def gcd(f, g, p=0, verbose=False):
    if (len(f)<len(g)):
        return gcd(g,f,p, verbose)
    r = [0]*len(f)
    r_mult = reciprocal(g[0], p)*f[0]
    for i in range(len(f)):
        if (i< len(g)):
        r[i] = f[i] - g[i]*r_mult
        else:
        r[i] = f[i]
        if (p != 0):
            r[i] %= p
    while (abs(r[0])<EPSILON):
        r.pop(0)
        if (len(r) == 0):
        return g
    return gcd(r, g, p, verbose)
```


Listing 3: GCD function

Finally, to get the set U_{1}, we go through each element in G_{m} and find elements where $\operatorname{gcd}(f(x), m(x)) \in \mathbb{Z}_{p}^{*}$.

```
for i, c in enumerate(coefficients):
    if (gcd(c, g, p, True) == Z_p - [0]):
    U1.append (c) } }
```

Listing 4: Identifying elements of U_{1}

```
for i in range(len(U1)):
    product = np.polymul(U1[i], e_kx)
    if (len(product > num_coefficients)):
        _, remainder = np.polydiv(product, g)
        remainder = np.mod(remainder[-(num_coefficients):], p)
        remainder = remainder.astype(int)
        Uk.append(remainder)
```

```
else:
    Uk. append (product)
```

Listing 5: Identifying elements of U_{k}

4 Proof of Concept and Examples

Example 4.0.1. We take $m(x)=P_{1} P_{2}$, with $P_{1}(x)=\left(x^{2}+x+1\right)$ and $P_{2}(x)=$ $\left(x^{3}+x+1\right)$ in $\mathbb{Z}_{2}[x]$. Then:

$$
\begin{equation*}
m(x)=x^{5}+x^{4}+1 \in \mathbb{Z}_{2}[x] \tag{3}
\end{equation*}
$$

We will use this polynomial $m(x)$ to construct the set G_{m}. We define G_{m} as:

$$
G_{m}=\left\{f(x) \in \mathbb{Z}_{2}[x] \mid \operatorname{deg}(f)<\operatorname{deg}(m)\right\}
$$

with $\operatorname{deg}(m)=5$. Using matrix representation, we can then use our program to implement the full set G_{m}, as shown in Table 1 .

	$\left(a_{4}, a_{3}, a_{2}, a_{1}, a_{0}\right)$
f_{1}	$(0,0,0,0,1)$
f_{2}	$(0,0,0,1,0)$
\vdots	\vdots
f_{30}	$(1,1,1,1,0)$
f_{31}	$(1,1,1,1,1)$

Table 1: Generated table of all elements in $G_{m} \in \mathbb{Z}_{2}[x]$ where $m(x)=x^{5}+x^{4}+1$

Where $f(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. The total number of elements in G_{m} is 2^{5}, whilst the total number of elements in G_{m}^{*} is $2^{5}-1=31$. The idempotent elements in this set are as follows:

Matrix
$\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1\end{array}\right]$
:---
1
$x^{4}+x^{3}+x^{2}$
$x^{4}+x^{3}+x^{2}+1$

Table 2: Idempotents of G_{m} with $m(x)=x^{5}+x^{4}+1$

We are expecting $2^{2}-1=3$ idempotents, which is confirmed by the above. We define the set U_{1} as $U_{1}=\left\{u(x) \in G_{m}^{*} \mid \operatorname{gcd}\left(u(x), x^{5}+x^{4}+1\right)=1\right.$ in $\left.\mathbb{Z}_{2}[x]\right\}$. Similarly, the set U_{2} is given by $U_{2}=\left\{\left(x^{4}+x^{3}+x^{2}\right) u(x) \in\left(\mathbb{Z}_{2}[x]\right)_{m} \mid \operatorname{gcd}\left(\left(x^{4}+\right.\right.\right.$ $\left.\left.\left.x^{3}+x^{2}\right) u(x), x^{5}+x^{4}+1\right) \in \mathbb{Z}_{2}^{*}\right\}$. Finally, the set U_{3} is defined as $U_{3}=\left\{\left(x^{4}+\right.\right.$ $\left.\left.x^{3}+x^{2}+1\right) u(x) \in\left(\mathbb{Z}_{2}[x]\right)_{m} \mid \operatorname{gcd}\left(\left(x^{4}+x^{3}+x^{2}+1\right) u(x), x^{5}+x^{4}+1\right) \in \mathbb{Z}_{2}^{*}\right\}$.

$G_{m} |$| 1 | x | $x+1$ |
| :--- | :--- | :--- |
| x^{2} | $x^{2}+1$ | $x^{2}+x$ |
| $x^{2}+x+1$ | x^{3} | $x^{3}+1$ |
| $x^{3}+x$ | $x^{3}+x+1$ | $x^{3}+x^{2}$ |
| $x^{3}+x^{2}+1$ | $x^{3}+x^{2}+x$ | $x^{3}+x^{2}+x+1$ |
| x^{4} | $x^{4}+1$ | $x^{4}+x$ |
| $x^{4}+x+1$ | $x^{4}+x^{2}$ | $x^{4}+x^{2}+1$ |
| $x^{4}+x^{2}+x$ | $x^{4}+x^{2}+x+1$ | $x^{4}+x^{3}$ |
| $x^{4}+x^{3}+1$ | $x^{4}+x^{3}+x$ | $x^{4}+x^{3}+x+1$ |
| $x^{4}+x^{3}+x^{2}$ | $x^{4}+x^{3}+x^{2}+x$ | $x^{4}+x^{3}+x^{2}+1$ |
| $x^{4}+x^{3}+x^{2}+x+1$ | | |

Table 3: Full set G_{m}

U_{1}	1	x	$x+1$
x^{2}	$x^{2}+1$	$x^{2}+x$	
x^{3}	$x^{3}+x$	$x^{3}+x^{2}$	
$x^{3}+x^{2}+1$	$x^{3}+x^{2}+x+1$	x^{4}	
$x^{4}+1$	$x^{4}+x+1$	$x^{4}+x^{2}$	
$x^{4}+x^{2}+x+1$	$x^{4}+x^{3}$	$x^{4}+x^{3}+1$	
$x^{4}+x^{3}+x$	$x^{4}+x^{3}+x^{2}+x$	$x^{4}+x^{3}+x^{2}+x+1$	

Table 4: The set U_{1}

U_{2}	$x^{2}+x+1$	$x^{3}+1$	$x^{3}+x^{2}+x$	$x^{4}+x$
$x^{4}+x^{2}+1$	$x^{4}+x^{3}+x+1$	$x^{4}+x^{3}+x^{2}$		

Table 5: The set U_{2}

$$
U_{3}\left|x^{3}+x+1\right| x^{4}+x^{2}+x \mid x^{4}+x^{3}+x^{2}+1
$$

Table 6: The set U_{3}

To confirm the elements in each of these three sets, we have presented the full sets in Tables 3, 4, 5 and 7

It is clear that each of the disjoint subsets U_{1}, U_{2}, U_{3} form up the set G_{m}. We can also see that all of U_{1}, U_{2} and U_{3} are groups under multiplication modulo $m(x)$, given that they are closed, associative, have an identity $\left(e_{1}(x)=1\right.$ for $U_{1}, e_{2}(x)=$ $x^{4}+x^{3}+x^{2}$ for U_{2} and $e_{3}(x)=x^{4}+x^{3}+x^{2}+1$ for $\left.U_{3}\right)$ and have an inverse for each of the elements in the set. Therefore, we have demonstrated that for the example of $m(x)=x^{5}+x^{4}+1 \in \mathbb{Z}_{2}[x]$, the set G_{m} is made up of 3 disjoint subsets that each form a group under multiplication modulo $m(x)$. For the purposes of demonstration, we will show the Cayley table for U_{3}, since U_{1} and U_{2} would consume too much space.

$$
\begin{array}{l|l|l|l}
\text { Cayley Table for } U_{3} & x^{3}+x+1 & x^{4}+x^{2}+x & x^{4}+x^{3}+x^{2}+1 \\
x^{3}+x+1 & x^{4}+x^{2}-x & -x^{4}+x^{3}-x^{2}-1 & x^{3}+x+1 \\
x^{4}+x^{2}+x & -x^{4}+x^{3}-x^{2}-1 & -x^{3}-x+1 & x^{4}+x^{2}+x \\
x^{4}+x^{3}+x^{2}+1 & x^{3}+x+1 & x^{4}+x^{2}+x & x^{4}-x^{3}+x^{2}+1
\end{array}
$$

Table 7: The set U_{3}

Example 4.0.2. Assume we have some $m(x)=x^{3}+2 x+x^{2}+2 \in \mathbb{Z}_{3}$. Clearly we can see that $m(x)$ is square-free, as it can be written as $m(x)=P_{1} * P_{2}=(x+1)\left(x^{2}+2\right)$. G_{m} based on this $m(x)$ would be a set that contains $3^{3}=27$ elements, since we are working in \mathbb{Z}_{3}. Additionally, since all polynomials have degree strictly less than $\operatorname{deg}(m(x))=3$, they will be of the form $f(x)=a_{2} x^{2}+a_{1} x+a_{0}$ with $a_{i} \in \mathbb{Z}_{3}$. We will find the idempotents of G_{m} based on the provided algorithms. We will have $2^{2}-1=3$ idempotents, and they are characterized as below:

$$
\begin{array}{lc}
e_{1}(x)= & 1 \\
e_{2}(x)= & x^{2}+2 x+1 \\
e_{3}(x)= & 2 x^{2}+x
\end{array}
$$

Each idempotent is a perfect factor of $m(x)$, forming a group with the respective identity. The groups will be as follows: U_{1} with identity $1, U_{2}=\left(x^{2}+2 x+1\right) * U_{1}$ with identity $\left(x^{2}+2 x+1\right)$, and finally, $U_{3}=\left(2 x^{2}+x\right) * U_{1}$ with identity $2 x^{2}+x$.

Example 4.0.3. Let $m(x)=P_{1}^{2} * P_{2}=(x+1)^{2}(x+2)=x^{3}+x^{2}+2 x+2 \in \mathbb{Z}_{3}$. Clearly, we can see that $m(x)$ is not square-free, as we have at least one term where the power of P_{i} is not 1 . In this case, then we have three perfect factors of $m(x)$: $1, k=(x+1)^{2}, h=(x+2)$. Thus G_{m} has exactly 3 multiplicative groups modulo $m(x)$, namely, U_{1}, U_{k} and U_{h}.

5 Conclusion

Let p be a prime integer and $m(x) \in Z_{p}[x]$ of degree ≥ 2. In this project, we have used the Chinese Remainder Theorem to construct multiplicative groups modulo $m(x)$ in G_{m}, where $G_{m}=f(x) \in \mathbb{Z}_{p}[x] \mid \operatorname{deg}(f)<\operatorname{deg}(m)$. If $m(x) \in Z_{p}[x]$ is squarefree, we showed that G_{m}^{*} is the union of disjoint multiplicative groups modulo $m(x)$. If $m(x)$ is not square-free, we constructed all multiplicative group modulo $m(x)$ in G_{m}. If U_{k} is a multiplicative group modulo $m(x)$ in G_{m}, then $\left|U_{k}\right|$ is determined. Through our computational implementation of this process, we can easily find out every element within the set G_{m} and each subsequent subset that forms a group, namely
$U_{1}, U_{2}, \ldots, U_{k}$. This removes the need for exhaustively going through the set G_{m} by hand and significantly reduces the restrictions on finding sets with $m(x)$ having a higher degree working in \mathbb{Z}_{p}. For future work, we consider other problems to which the Chinese Remainder Theorem applies.

References

[1] Ayman Badawi, Abstract Algebra Manual: Problems and Solutions, Nova Science Publications, USA, 2004.
[2] Joseph A. Gallian, Contemporary Abstract Algebra, Brooks/Cole, USA, 2022.
[3] Yuval, unc0mm0n, Python function to calculate polynomial gcd over finite files of prime cardinality, GitHub repository, GitHub, https://gist.github.com/unc0mm0n/117617351ecd67cea8b3ac81fa0e02a8, 2016.

